33. Neuartige Cycloadditionsreaktionen von 2- und 4-Vinylpyridin mit N-Alkyl-maleinimiden

von Th. Wagner-Jauregg, Q. Ahmed

Forschungsabteilung der Siegfried AG, Zofingen

und E. Pretsch

Laboratorium für Organische Chemie der ETH, Zürich

(13. XI. 72)

Summary. 4-Vinylpyridine (1a) combines with 3 moles of dienophilic N-alkyl-maleinimides (2) in the presence of polymerization inhibitors. The first step of the reaction probably consists of 1:1-addition with participation of an aromatic double bond, comparable to the analogous behavior of styrene and its derivatives under similar conditions. The unstable intermediates **3**, like other Schiff bases (imines), add 2 further moles of the N-alkyl-maleinimides forming the spiro compounds **4**. These are split in an acidic medium into the N-alkyl-5, 6, 7, 8-tetrahydroisoquinoline-7, 8-dicarboximides (**5**), and N, N'-dialkyl-2-butene-1, 2, 3, 4-tetracarboxylic 1, 2, : 3, 4-diimides (**6**). LiAlH₄-reduction of these two types of compounds leads to N-alkyl-1H-(3, 4-d)-pyrrolo-2, 3, 3a, 4, 5, 9b-hexahydroisoquinolines (**7**) and to N, N'-dialkyl-3, 3'-bipyrrolidyls (**8A**) and their dehydro-products **8B**, respectively.

From the reaction of 2-vinylpyridine (1b) with N-alkyl-maleinimides (2) the 1:2-addition products 9 can be isolated in the presence of polymerization inhibitors, which are derivatives of N-alkyl-5, 6, 7, 8-tetrahydroquinoline-5, 6-dicarboximides (9). This again corresponds to the reaction type of cycloadditions with styrene. Furthermore 1:3 adducts are formed which according to ¹H- and ¹³C-NMR.-data most likely have the structure 10, representing a new type of cycloaddition involving the pyridine nitrogen.

Cycloadditionen von Dienophilen an asymmetrische Diphenyläthylene und an Styrol unter Beteiligung einer Doppelbindung des aromatischen Kernes sind lange bekannt [1]. Erstaunlicherweise war von entsprechenden Umsetzungen der Vinylpyridine bisher unseres Wissens lediglich ein einziger einigermassen vergleichbarer Fall, die Addition von Acetylendicarbonsäure-dimethylester an 2-Vinylpyridin beschrieben [2]. Wir konnten jetzt die im folgenden geschilderten Umsetzungen von 2und 4-Vinylpyridin mit N-Alkyl-maleinimiden durchführen [3].

4-Vinylpyridin (1 a) addiert beim Erhitzen in siedendem Acetonitril bzw. Dichlormethan (weniger gut in *n*-Butanol) bei Anwesenheit von 1 bis 5% Hydrochinon oder 4-*t*-Butylbrenzcatechin als Polymerisationsinhibitor mit ca. 20-60proz. Ausbeute 3 Mol N-Alkyl-maleinimide (2a-f). Die im Schema 1 angegebene Strukturformel 4^{-1})

1) Registrierungsbezeichnung von 4 für die Chemical Abstracts:

Spiro[pyrrolidine-3,3' (2'H)-pyrrolo[2,1-a]isoquinoline]-1',2',9',10'-tetracarboxylic 1',2',9',10'-diimide, N, N', 1-trialkyl-1',8',9',10' a,10' b-hexahydro-2,5-dioxo. der erhaltenen Additionsprodukte gründet sich auf die Massen- und ¹H-NMR.-Spektren.

Letzteren kann man beispielsweise für 4d (R = *n*-Butyl) folgende Informationen entnehmen:

1. Drei nicht äquivalente Butylgruppen sind vorhanden. 2. Es gibt ein AX-System mit der Kopplungskonstante von 19 Hz und grosser Differenz in der chemischen Verschiebung ($\delta_{A} = 2,5$ ppm, $\delta_{X} = 3,9$ ppm). Analoge AX-Systeme wurden früher in

unseren Spiroprodukten beobachtet [4]. Sie sind mit dem Methylen eines 5gliedrigen Heterocyclus vereinbar, in dem ein Proton durch eine benachbarte Carbonylgruppe stark entschirmt ist und die geminale Kopplungskonstante durch die Carbonylgruppe in α -Stellung erhöht wird. 3. Die Signale der drei olefinischen Protonen (5,4; 5,6 und 5,7 ppm) sind mit der Struktur 4 gut vereinbar. Das Proton H_a (5,6 ppm) zeigt ausser den beiden vicinalen Kopplungen (6 bzw. 3 Hz) noch eine allylische Kopplung mit H_b (3 Hz).

Die Bildung der 1:3-Additionsprodukte 4 erfolgt wahrscheinlich über die nicht fassbaren 1:1-Addukte 3. Eine direkte Stabilisierung von 3 zu 5 mit einfachem Umklappen einer Doppelbindung unter Aromatisierung des N-haltigen Ringes wird offenbar vereitelt durch die hohe Reaktionsfähigkeit der infolge Konjugation mit einer Butadiengruppierung aktivierten >C=N-Bindung. So kommt es zur «dipolaren Spiro-Bisaddition», wie sie von uns für die Addition von Maleinimiden an *Schiff* sche Basen beschrieben wurde [4].

Dagegen findet man den Typus einer 1,4-Cycloaddition, wie sie der direkte Übergang $1 + 2 \rightarrow 5$ darstellen würde in der Anlagerung von Dienophilen an andere Vinyl-heterocyclen, z. B. 4-Vinylisochinolin [5], an 2-Vinylthiophen und 2-Vinylthionaphten [6] sowie an 2- und 3-Indole [7] verwirklicht.

Die 1:3-Addukte der Struktur 4 besitzen eine hohe thermische Stabilität. Beispielsweise lässt sich 4d bei 220°/0,001–0,05 Torr unzersetzt sublimieren. Dagegen zerfallen aber die Spiroverbindungen 9 beim Kochen mit konz. Salzsäure in Methanol in N-Alkyl-5,6,7,8-tetrahydroisochinolin-7,8-dicarboximide $(5)^2$) und N,N'-Dialkyl-3,3'-dehydro-dipyrrolidyl-2,2',5,5'-tetraone $(6)^3$) (vgl. Tab. 3).

Formel 4A versinnbildlicht den Mechanismus der durch Säure-Katalyse auftretenden Isomerisierung. Die treibende Kraft für den Zerfall von 4A ist wahrscheinlich in einer Hydridwanderung zu suchen, die zur Aromatisierung und Verminderung von Spannung führt.

Die Substanzen der Struktur 6 stellen formell dimerisierte N-Alkylmaleinimide (2) dar. Man könnte sich vorstellen, dass aus 4 beim Kochen mit Säuren unter Retro-Dienzerfall N-Alkylmaleinimide regeneriert werden, die sich dann zu 6 dimerisieren. Diese Annahme ist aber nicht zutreffend, denn wir konnten uns davon überzeugen, dass N-Butylmaleinimid beim Kochen mit HCl in CH₃OH sowohl in Ab- wie in Anwesenheit von 4-Vinylpyridin kein 6d liefert. Dagegen war es möglich, N-Alkylmaleinimide mittels eines speziellen Katalysators zu trimerisieren, worüber in einer späteren Mitteilung berichtet werden soll.

Mittels LiAlH₄ reduzierten wir **5d** mit 62proz. Ausbeute zu (N2-Butyl-1H-(3,4-d) pyrrolo)-2,3,3a,4,5,9b-hexahydro-isochinolin (**7d**) (Schema 1). **6d** und **6f** lieferten bei der LiAlH₄-Reduktion schwer trennbare Gemische von **8dA** bzw. **8fA** (N, N'-Dialkyl-3,3'-di-pyrrolidyle) sowie deren Dehydrierungsprodukte **8dB** bzw. **8fB**.

Wie Schema 2 und Tab. 2 zeigen, erhielten wir bei der Addition der N-Alkylmaleinimide 2d und 2e an 2-Vinylpyridin (1b) in siedendem n-Butanol, bei Anwesenheit von 1-5% p-t-Butylbrenzkatechin als Polymerisations-Inhibitor, in geringer Ausbeute einerseits 1:2-Additionsprodukte, denen wahrscheinlich die Struktur 9⁴) zukommt. Die Verknüpfung des N-n-Butylsuccinimid-Substituenten in 9b-Stellung ergibt sich eindeutig aus dem ¹H-NMR.- und dem ¹³C-NMR.-Spektrum von 9d. Das «off-resonance» entkoppelte ¹³C-NMR.-Spektrum zeigt, dass ein quaternäres nichtaromatisches

²) Registrierungs-Bezeichnung für die Chemical Abstracts: 7,8-Isoquinoline-dicarboximide, N-alkyl-5,6,7,8-tetrahydro.

³) Registrierungs-Bezeichnung für die Chemical Abstracts: 2-Butene-1,2,3,4-tetracarboxylic 1,2:3,4 diimide, N, N'-dialkyl. Das Vorliegen der 6 entsprechenden cis-Formen kann auf Grund der NMR.-Spektren nicht ausgeschlossen werden. Die Anwesenheit einer Doppelbindung in 6 ist durch das ¹³C-NMR.-Spektrum erwiesen.

⁴⁾ Registrierungsbezeichnung für die Chemical Abstracts: 1H-Pyrrolo[3,4-f]quinolin-9bsuccinimide, N, N'-dialkyl-2, 3, 3a, 4, 5, 9b-hexahydro-1, 3-dioxo.

Kohlenstoffatom vorhanden ist. Da im Protonenresonanzspektrum kein Signal von einem isolierten Proton sichtbar ist, bleibt als einzige Möglichkeit die in Schema 2 angegebene Struktur 9d. Im Massenspektrum von 9d ist ein intensives Signal bei $m/e = (M^+ - 153)$ vorhanden, was der Abspaltung von N-*n*-Butylmaleinimid durch *McLafferty*-Umlagerung entspricht. Die relativ hohe Intensität des Signals (20% des Basispiks) ist gut mit der vorgeschlagenen Struktur vereinbar, da die benachbarte Carbonylgruppe in idealer Stellung für diese Umlagerung liegt⁵).

Der Additionsmechanismus entspricht im Prinzip demjenigen von N-Butylmaleinimid an Styrol in Gegenwart von Pikrinsäure [8], nämlich der Kombination einer Dien-Synthese mit Beteiligung einer aromatischen Doppelbindung (12) und nachfolgender indirekt substituierender Addition. Das Styrol-Additionsprodukt trägt aber den N-alkylierten Succinimid-Substituenten gemäss ¹³C-NMR.-Spektrum, im Gegensatz zu 9, nicht an einem quaternären C-Atom.

Ausser den 1:2-Addukten 9d und 9e konnten wir noch die 1:3-Addukte 10a, 10b und 10d isolieren (vgl. Schema 2 und Tab. 2).

Das Protonen-breitbandentkoppelte ¹³C-NMR.-Spektrum von **10 a** lässt ausser den Signalen der Methylgruppen (24,6–25,1 ppm) für jedes Kohlenstoffatom ein isoliertes Signal erkennen. Auf Grund der chemischen Verschiebungen können die Carbonyl-Signale (176,2–179,2 ppm) und die Signale der olefinischen Kohlenstoffatome (132,0 und 136,3 ppm) direkt zugeordnet werden. Das «off-resonance» entkoppelte Spektrum zeigt, dass die restlichen 11 Signale zwei quaternären Kohlenstoffatomen (55,3 und 68,3 ppm), zwei Methylengruppen (16,6 und 27,9 ppm) und 7 Methyngruppen (35,2– 65,6 ppm) zuzuordnen sind.

^b) Wir danken Hrn. Doz. Dr. J. Seibl, Org.-chem. Laboratorium der ETH-Zürich für die Ermittlung und Deutung sämtlicher für vorliegende Untersuchung verwendeten Massenspektren.

Die Protonenresonanzspektren und Entkopplungsexperimente zeigen, dass folgende Teilstrukturen vorhanden sind:

$$\geq$$
C-CH=CH-CH $<$, -CH₂-CH₂-CH₂-CH-CH $<$

Nach diesen Informationen erscheinen für die 1:3-Addukte 3 verschiedene Strukturen formell möglich, die sich alle vom 1,3-Dioxo-N,2-alkyl-2,3,3a,4,5,5a,6,7,9a, 10a-decahydro 1 H-pyrrolo-[3,4-f]chinolin (11) ableiten. Die eine davon enthält einen, die zweite zwei Vierringe. Wegen zu grosser Spannung lässt sich für beide kein Dreiding-Modell aufbauen, wohl aber für die nur Fünf- und Sechsringe enthaltende Struktur 10⁶). Dieser geben wir daher den Vorzug. Es sind davon, ebenso wie von 9, raumisomere Formen möglich.

Wahrscheinlich erfolgt auch bei der 1:3-Addition des 2-Vinylpyridins, ebenso wie bei der Bildung der vorher erwähnten 1:2-Addukte, zunächst Dien-Addition unter Beteiligung einer --CH=CH-Bindung des Pyridinringes unter Bildung der instabilen 1:1-Addukte 12. Es folgt die criss-cross Cycloaddition von zwei Molekeln N-Alkylmaleinimid unter Beteiligung des Pyridin-Stickstoffatoms $(13 \rightarrow 10)$. Letzteres wurde von Acheson et al. [2] auch für die Anlagerung von Acetylendicarbonsäure-dimethylester an 2-Vinylpyridin angenommen, doch entstehen dabei andersartige Verbindungen (14 und 15).

Die Entstehung der oben beschriebenen Addukte 9 und 10 stellt daher einen neuartigen Cycloadditions-Typus dar.

Aus 5-Åthyl-2-vinyl-pyridin erhielten wir 1:2-Addukte vom Typus 9, nämlich die Verbindungen **16d** und **16e** (Tab. 2). 2-Methyl-5-vinyl-pyridin gab in Acetonitril mit *n*-Butylmaleinimid eine gummiartige Masse, aus der durch Chromatographie in nur 2,5proz. Ausbeute eine kristallisierte Substanz vom Smp. 176–178° isoliert wurde. Sie muss gemäss Elementaranalyse und massenspektroskopischer Molekulargewichts-Bestimmung als 1:2-Addukt der Summenformel $C_{24}H_{31}N_3O_4$ angeschen werden. Das ¹H-NMR.-Spektrum gestattete keine eindeutige Strukturzuteilung.

Experimenteller Teil

Alle Schmelzpunkte sind unkorrigiert und im Tottoli-Apparat bestimmt.

Die benutzten N-Alkylmaleinimide waren teils käufliche Produkte, teils nach Literaturvorschrift von uns hergestellt. Das N-Cyclohexylmaleinimid stammte von der *Höchster* Farbwerke AG. Es enthielt 20% Wasser und wurde in diesem Zustand für unsere Versuche verwendet.

Die Protonenresonanzspektren wurden mit Hilfe eines Kernresonanzspektrometers Modell A-60A bzw. HA-100 der Firma Varian aufgenommen.

⁶) Chemical Abstracts-Name für 10:

N, N', N''-Trialkyl-2, 3, 5, 6, 7, 8, 9, 10-octahydro-3, 6a-etheno-1*H*, 6a*H*-pyrrolo[2, 1-*i*]indole-1, 2, 5, 6, 7, 8-hexacarboxylic 1, 2: 5, 6: 7, 8-triimide

oder

2, 5, 10-Trialkyl-3a, 3c, 6a, 8a, 11a, 12, 13, 13 a-octahydro-4H-3b, 8-etheno-1H-dipyrrolo[3,4b: 3', 4'-e]pyrrolo[3',4':3,4]pyrrolo[2, 1-i]indole-1, 3, 4, 6, 9, 11(2H, 5H, 8H, 10H)-hexone. Zum Messen der ¹³C-Kernresonanzspektren wurde ein HFX-90- Gerät der Firma *Bruker*-Spectrospin verwendet (22,63 MHz für ¹³C), ausgerüstet mit einer *Fourier*-Transformationseinheit B-SC-FFT-12. Es wurden Proberöhrchen von 5 mm Durchmesser eingesetzt, 20-50 mg der zu prüfenden Substanz enthaltend.

Die Massenspektren wurden mit Hilfe eines Hitachi Perkin-Elmer RMU 6A Massenspektrometers aufgenommen.

Darstellung der Additionsprodukte. – Über die Reaktionsbedingungen, physikalischen Konstanten, Analysen usw. der Addukte geben die Tab. 1 und 2 Auskunft. Die Reaktionslösungen wurden im Rotavap unter vermindertem Druck eingedampft, wobei meistens ein Sirup hinterblieb, der beim Anreiben mit etwas Methanol oder Äther erstarrte bzw. Kristalle abschied, die nach Absaugen bis zur Schmelzpunktkonstanz umgelöst wurden. In einigen Fällen erfolgte chromatographische Reinigung der sirupösen Produkte, z. B. durch Filtration der benzolischen Lösungen über neutralem Aluminiumoxid und Elution mit Benzol/Dichlormethan-Gemischen (z. B. 1:1).

Hydrolyse der 1:3-Addukte des 4-Vinylpyridins (vgl. Tab. 3). – Ca. 2 g des Additionsproduktes in 60 ml Methanol + 30 ml konz. Salzsäure (37 proz.) wurden 7 Std. lang unter Rückfluss gekocht, wobei sich eine feste Substanz ausschied. Diese wusch man nach den Absaugen mit Wasser, kristallisierte aus dem in Tab. 3 angegebenen Lösungsmittel um und erhielt so die entsprechende Substanz 6.

Das salzsaure Filtrat engte man im Vakuum zur Trockne ein, löste in 25 ml Wasser und filtrierte über Celit. Die klare Lösung wurde mit 5proz. Natriumcarbonat-Lösung basisch gemacht und mit Äther erschöpfend extrahiert. In die mit Wasser gewaschene und über wasserfreiem Magnesiumsulfat getrocknete, ätherische Lösung leitete man gasförmiges HCl ein und kristallisierte das erhaltene Hydrochlorid von 5 um.

Reduktion von 5d zu 7d durch LiAlH₄. – Eine Suspension von 3,1 g (0,011 Mol) 5d in 170 ml trockenem Äther gab man rasch zu einer gerührten Aufschlämmung von 3,2 g (0,084 Mol) LiAlH₄ in 250 ml abs. Äther. Nach 5 Std. Rühren bei Zimmertemp. wurde das gekühlte Gemisch nacheinander mit 4 ml Wasser, 5 ml 10proz. NaOH und 5 ml H₂O behandelt. Man filtrierte die Ätherphase, wusch den Rückstand mit Äther, trocknete die vereinigten ätherischen Phasen über MgSO₄ und erhielt nach dem Verdampfen des Äthers 2,2 g eines Öles, das bei Hochvakuumdestillation 1,5 g eines farblosen Öles vom Sdp. 93–95°/0,005 Torr lieferte.

 $C_{15}H_{22}N_2 \ (230,35) \qquad \text{Ber. C } 78,20 \quad \text{H } 9,57 \quad \text{N } 12,17\% \qquad \text{Gef. C } 78,26 \quad \text{H } 9,57 \quad \text{N } 12,17\%$

Das Pikrat kristallisierte aus Aceton/Äther, Smp. 139-140°.

$C_{21}H_{25}N_5O_7$	Ber. C 54,90	H 5,48	N 15,24	0 24,38%
(688,5)	Gef. ,, 54,86	,, 5,46	,, 15,30	,, 24,38%

Reduktion von 6 zu 8 durch LiAlH₄. – 8d: 5 g (0,016 Mol) 6d in 400 ml abs. Äther mit 7,4 g (0,19 Mol) LiAlH₄ in 900 ml abs. Äther 20 Std. lang wie oben behandelt und aufgearbeitet. Erhalten: 1,62 g (39,8%) farbloses Öl vom Sdp. 95–97% 0,01 Torr.

8dA: C ₁₆ H ₃₀ N ₂ (252,4)	Ber. C 76,10	H 12,78	N 11,11%
$8 dB: C_{16}H_{30}N_2$ (250,4)	Ber. ,, 76,72	,, 12,08	,, 11,19%
	Gef. ,, 76,64	., 12,30	,, 11,06%

Das Massenspektrum sprach für ein Gemisch von mehr A als B. Das Di-Pikrat kristallisierte aus Aceton/Äther in gelben Kristallen vom Smp. 180–182°.

A: C ₂₈ H ₃₈ N ₈ O ₁₄ (710,6)	Ber. C 47,31	H 5,35	N 15,76	O 31,52%
	Gef. ,, 47,73	,, 5,29	,, 15,63	,, 31,35%
$B: C_{28}H_{36}N_8O_{14}$ (708,6)	Ber. ,, 47,44	,, 5,12	,, 15,81	,,31,6 %

8f: Darstellung in ähnlicher Weise wie **8d**. Das erhaltene feste Rohprodukt wurde mehrmals aus Methanol/CH₂Cl₂ umkristallisiert und schmolz dann bei 200-203°.

A: C ₂₀ H ₂₄ N ₂ (292,2)	Ber. C 82,15	H 8,27	N 9,58%
	Gef. ,, 82,31	,, 8,32	,, 9,36%
$B: C_{20}H_{22}N_2$ (290,2)	Ber. ,, 82,71	,, 7,64	,, 9,65%

Das Massen- und das ¹H-NMR.-Spektrum sprachen für das Vorliegen eines 1:1 - Gemisches von A und B.

Tabelle	:1.1:3-Addukte au	s 4-Vinylpyridin (1	a) und N-Alkylmalei	nimiden	(2). (Als Lösungsn	nittel diente Aceto	nitril, in	n Fallc	von 4f	Dichlorn	nethan) ^a)
Strukti d. Real Produk	ur Verhältnis tt. - 1a/2 im te ReaktAnsatz	Dauer des Rückfluss- kochens in Std.	Smp. und Kristallisations- mittel	Aus- beute in %	Summenformel	MolGcw. gemäss Massen- Spektrum m/ø (M+)	Elemen	ıtarane	ulyse ^b)	0, -	IR spektrum λmax in μ
4a	1:2	23	237° CH ₂ Cl ₃ + CH ₃ OH	53	$\mathrm{C}_{22}\mathrm{H}_{22}\mathrm{N}_4\mathrm{O}_6$	Ber. 438,4 Gef. 438	60,27 60,29	5,06 5,37	12,78 12,67	21,89 21,66	5,63 5,86
4c	1:3	62	216218° CH ₂ Cl ₂	13,3	$C_{26}H_{34}N_4O_6$	Ber. 522,6 Gef. 522	64,35 64,54	6 ,5 6 6, 5 6	$10,72 \\ 10,65$	18,37 18,30	5,68 5,9
4d	1:2	48	201–202° CH ₂ Cl ₂ + CH ₃ OH	51	$\mathrm{C}_{31}\mathrm{H}_{40}\mathrm{N}_{4}\mathrm{O}_{6}$	Ber. 564,7 Gef. 564	65,9 4 65,65	7,14 7,07	9,92 9,77		5,65 5,9
4e	1:2	48	$\begin{array}{l} 220223^{\circ}\\ \mathrm{CH_2Cl_2}+n-\mathrm{C_6H_{14}} \end{array}$	51	$C_{37}H_{46}N_4O_6$	Ber. 642,8 Gef. 642	6 9, 14 69,21	7,21 7,17	8,72 8,60	14,93 15,00	5,63 5,87
4f	1:1	62	290° CH2Cl3 + CH3OH	31,5	C ₃₇ H ₂₈ N ₄ O ₆	Ber. 624,7 Gef. 624	71,14 71,32	4,52 4,53	8,97 9,01	15,37 15,13	5,62 5,84 6,25 14,5
blu (a	s 1–5% Hydrochi unserer Analytiscł	non als Polymeris. aen Abteilung aus	ationsinhibitor. geführt mit dem voll	automa	tischen Elementar	r-Analysator Mod	. 1102 v	on Can	lo Erba		

446

Tabelle 21da	lukte aus 2- Zusatz	Vinylpyridin (1 : von 1–5% n-t-	(b), <i>5-Athyl-2-vinylpyn</i> , Butyl-benzkatechinin,]	<i>din</i> (1c) Molares	und N-Alkylm Verhältnis 1b	1. deinimiden (2), g 1. bzw. 1c/2 im R	ebildet keaktion	durch I sgemis	Kochen ch = 1	. in <i>n</i> -But : 2	anol, unter
2 R =	Addukte	Reaktions- dauer in Std.	Smp. Kristallisations- mittel	Aus- beutc in %	Summen- formel	MolGew. gemäss Massen- Spektrum m/e (M ⁺)	Elemer C	ltarana H	lyse N	0	IR Spektren A _{max} in µ
a) CH ₃	10a (1:3)	24	339-342° CH ₂ Cl ₂	12,2	$C_{22}H_{22}N_4O_6$	Ber. 438,4 Gef. 438	60,27 60,53	5,06 5,14	12,78 12,72	21,89 21,62	5,69; 5,95
b) C ₂ H ₅	10 b (1:3)	16	280° CH ₂ Cl ₂	3,9	$\mathrm{C}_{25}\mathrm{H}_{28}\mathrm{N}_{4}\mathrm{O}_{6}$	Ber. 480,5 Gef. 480	62,49 62,35	5,87 5,71	11,66 11,57		5,69; 5,90
d) $n - C_4 H_9$	9d (1:2) und	48	186–188° CH_Cl_+ Äther	5,4	$C_{23}H_{29}N_3O_4$	Ber. 411,5 Gef. 411	67,13 68.97	7,10	10,21 9 99		5,65; 5,90
	10d (1:3)		$159-159,5^{\circ}$ CH ₂ Cl ₂ + <i>n</i> -Hexan CH ₂ Cl ₂	8,2	$\mathrm{C}_{31}\mathrm{H}_{40}\mathrm{N}_{4}\mathrm{O}_{6}$	Ber. 564,7 Gef. 564	65,94 65,99	7,14 7,06	9,92 9,93	17,00 17,05	5,61; 5,85
c) Cyclohexyl	9e (1:2)	42	241-243° <i>n</i> -Hexan + CH ₂ Cl ₂	9,6	$C_{27}H_{33}N_3O_4$	Ber. 463,6 Gef. 463	69,96 69,75	7,18 7,22	9,06 8,96	13,81 14,09	5,60; 5,85
d) $n - C_4 H_9$	16d (1:2)	48	182–184° <i>n</i> -Hexan + CH ₂ Cl ₂	12	$\mathrm{C}_{25}\mathrm{H}_{33}\mathrm{N}_3\mathrm{O}_4$	Ber. 439,6 Gef. 439	68,31 68,29	7,57 7,52	9, 5 6 9,39	14,56 14,79	5,63; 5,87
c) Cyclohexyl	16e (1:2)	48	228-230° CH ₂ Cl ₂ + <i>n</i> -Hexan	8,6	C ₂₉ H ₃₇ N ₃ O ₄	Ber. 491 Gef. 491	70,85 70,84	7,59 7,44	8,55 8,44	13,02 13,26	5,63; 5,86

Helvetica Chimica Acta – Vol. 56, Fasc. 1 (1973) – Nr. 33

447

R =	Struktur-	Rcaktions-	Smp. und	Aus-	Summenformel	MolGew.	Elemei	ntaran	alysc		IR
	1011101	dauer in Std.	Mistanisations- mittel	in %		gemass masseu Spektrum ^b) m/e (M+)	ပ	Н	N	0	Amax in μ
n-Propyl	5 c · HCl	5,5	250° (Zers.) CH ₃ OH + Aceton	55,8	$\mathrm{C}_{14}\mathrm{H}_{16}\mathrm{N}_{2}\mathrm{O}_{2}\cdot\mathrm{HCI}$	Ber. 280,76 Gef. (244 + HC	59,88 1) 59,45	$6,10 \\ 6,02$	9,98 9,83	11,40 11,63	3,8–4,05; 5,68 5,88
	6c		192–195° CH ₂ Cl + CH ₃ OH	65,8	$C_{14}H_{18}N_2O_4$	Ber. 278,3 Gef. 278	60,42 60,31	6,52 6,48	10,07 10,00	23,00 23,21	5,66; 5,92
<i>n</i> -Butyl	5 d · HCI	7	251–255° CH ₃ OH	57,7	$\mathrm{C}_{15}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{O}_{2}\cdot\mathrm{HCl}$	Ber. 294,5 Gef. (258 + HC	61,12 l) 61,02	6,45 6,53	9,50 9,46		3,8-4,1; 5,62 5,85
	6d		177–180° CH ₂ Cl ₂ CH ₃ OH	78,7	$\mathrm{C}_{16}\mathrm{H}_{22}\mathrm{N}_{2}\mathrm{O}_{4}$	Ber. 306,4 Gef. 306	62,73 62,92	7,24 7,13	9,14 9,01	20,89 20,95	5,63; 5,95
Cyclohexyl	5e • HCl	4	307° (Zers.) CH ₃ OH	40	$\mathrm{C}_{\mathrm{I7}}\mathrm{N}_{\mathrm{20}}\mathrm{N}_{\mathrm{2}}\mathrm{O}_{\mathrm{2}}\cdot\mathrm{HCl}$	Ber. 320,81 Gef. (284 + HC)	63,62 1) 63,44	6,60 6,57	8,73 8,47		·
	6 e ^b)		$291-294^{\circ}$ (Zers.) $CH_2Cl_2 + CH_3OH$	68,1	C20H26∑2∩4	Ber. 358,4 Gef. 358	67,02 67,16	7,31 7,33	7,82 7,84	$17,85 \\ 17,67$	5,70; 5,95
Phenyl	5f (Pikrat)	ŝ	188–190° Aceton + Äther	40	C ₂₃ H ₁₇ N₅O ₉	Ber. 507,41 Gef. 507	54,44 54,54	3,38 3,41	13,80 13,98	28,38 28,08	1
	6f		305–308° ¢) CH ₃ CN	68	$\mathrm{C}_{20}\mathrm{H_{14}N_2O_4}$	Ber. 346,3 Gef. 346	69,36 69,33	4,07 4,00	8,09 7,97	18,48 18,66	5,64; 5,8 6
 ^{a)} Die Hyd ^{b)} In Äthy ^{b)} In Athy 	drolysen vor rlacetat mit etracarbonsë	1 4c-e wurder Pd/C (5proz.) iure-diimid (er	ı in sicdendem Metha nicht hydrierbar (Zi halten durch Belicht	anol, vo immerte ung voi	n 4f in sicd. Tetrah mpcratur, Atmosph 1 N-Cyclohexyl-mah	ydrofuran unter iårendruck). Das einimid in Geger	Zusatz s mit 6e iwart vo	von ko isomei n Benz	nz. Sali re N, N' copheno	zsäure e -Dicycl n) schn	lurchgeführt. bhexyl-cyclo- iilzt bei 293-

Das mit 6f isomere N, N'-Diphenyl-cyclobutan-tetracarbonsäure-imid schmilzt bei 342° [9].

<u></u>

448

LITERATURVERZEICHNIS

- Th. Wagner-Jauregg, Ber. deutsch. chem. Ges. 63, 3213 (1930); idem, Liebigs Ann. Chemie 491, 1 (1931); K. Alder et al., Liebigs Ann. Chemie 565, 130 (1949), 585, 97 (1954); Th. Wagner-Jauregg, G. Häusler & A. Demolis, Experientia 22, 288 (1966). Weitere Literatur bei H. Krauch & W. Kunz, Reaktionen der organ. Chemie, 3. Auflage, S. 620, Dr. A. Hüthig Verlag, Heidelberg 1966.
- [2] R. M. Acheson, M. W. Foxton & A. R. Hands, J. chem. Soc. (C) 1968, 387.
- [3] Schweizer Patentanmeldung der Siegfried AG, Zofingen (Erfinder: Th. Wagner-Jauregg & Q. Ahmed), eingereicht am 11. März 1971. Vorläufige Mitteilung: Chimia 25, 227 (1971); die dort angegebene Strukturformel 10 ist durch die Formel 9d vorliegender Arbeit zu ersetzen.
- [4] Schweizer Patentanmeldung der Siegfried AG, Zofingen, vom 25.3.1970 (Erfinder: Th. Wagner-Jauregg & L. Zirngibl), s. auch L. Zirngibl, Th. Wagner-Jauregg, E. Pretsch et al., Tetrahedron 27, 2203 (1971); L. Zirngibl, Tetrahedron Letters 1971, 4189.
- [5] S. F. Dyke, M. Sainsbury, D. W. Brown & R. D. J. Clipperton, Tetrahedron 26, 5969 (1970).
- [6] J. F. Scully & E. V. Brown, J. Amer. chem. Soc. 75, 6329 (1953); W. Davies & Q. N. Porter, J. chem. Soc. 1957, 4957, 4961.
- [7] W. E. Noland, J. org. Chemistry 28, 884 (1963); J. M. Weinmann, Dissertation Abstr. 25, 1588 (1964); D. Beck & K. Schenker, Helv. 51, 264 (1968).
- [8] Th. Wagner-Jauregg, Tetrahedron Letters 1967, 1175.
- [9] G. O. Schenck, W. Hartmann, S. P. Mansfeld, W. Metzner & C. H. Krauch, Chem. Ber. 95, 1642 (1962).

34. Etude par spectrométrie de masse de la fragmentation du cyclopentènediol-3, 5-*trans*

par G. A. Singy et A. Buchs

Laboratoire de spectrométrie de masse, Université de Genève, 16 Bd. d'Yvoy, 1211 Genève 4

(19 X 72)

Summary. The decomposition modes of trans cyclopentene-3, 5-diol under electron impact have been studied on deuterium labelled analogues. Fragmentation mechanisms are proposed.

Dans le cadre de l'étude de la fragmentation de cyclopentane-polyols [1], nous avons synthétisé une série de cyclopentènediols-3,5-*trans* deutériés en vue de préparer ensuite des cyclopentane-diols-1,3 et -tétrols marqués. Le présent mémoire décrit une étude de la fragmentation des cyclopentènediols-3,5-*trans* (I) et *cis* (II)¹), effectuée à l'aide des composés *trans* marqués III, IV, V et VI.

¹) Vu la ressemblance qualitative des spectres de masse des stéréoisomères *cis* et *trans*, seule la fragmentation du diol *trans* a été étudiée en détail.